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Some methods are proposed for solving the Navier-Stokes equa-
tions for two-dimensional, incompressible, flow using the velocity-
vorticity formulation. The main feature of the wark is the solution
of the equation of continuity using boundary-value techniques. This
is possible because both of the velocity components are known
at each boundary point. Some illustrative results are computed
including some for heat convection inside a square cavity when
one side is hefd at a constant temperature. 1995 Academic Prass, Inc.

1. INTRODUCTION

This paper is devoted to a study of some methods of solving
the Navier-Stokes equations in the velocity—vorticity
formulation. In this formulation the equations are expressed
emtirely in lerms of the components of velocity and vorticity.
In the general three-dimensional case this involves six equa-
tions, but we shall consider in detail only the case of two-
dimensional flow in which there are only two velocity compo-
nents and one component of vordicity. However, the extension
10 three dimensions can be made, since our main object is o
consider methods by which the velocity ficld is derived from
the vorticity field, at the same time ensuring that the equation
of continuity is satisfied.

1.}, Basic Equations

The velocity-vorticity method has recently been reviewed
by Gatski [} who has given many references to work on
this formulation, We may start with the basic equations for
incompressible flow

Q%+ v-Vo=—p 'Vp+ oVp (hH)
[¢

V.v=210, (2)
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where ¥ is the velocity vector, p is the density, p the pressure,
and » is the coefficient of kinematic viscosity. If we note the
definition

w = curl » (3)

which defines the voiticity vector e then, taking the curl of
(1) we obtain

aj_(;-j-i-u-Vw—cu'Vv:vV’w, 4)
4

which gives the equation of transport of vorticity. Equation (4)
is central to all methods in the velocity—vorticity formulation
and the methods of approach vary only in the manner in which
the velocity components are determined from . We shall
consider here only the steady-state analogue of (4) in which
de/dt = §. This gives a boundary-value problem for the deter-
mination of the components of e from given approximations
1o the velocity vector p. In the present approach this determina-
tion is carried out by weli-known finite-difference methods.
However, the methods of determining the velocity compenents
differ considerably from previous approaches, In the present
work we shall present methods having some novel features.

1.2. Previous fnuestigations

Gatski has noted three separate types of methods for de-
termining the velocity commponents. In the first of these they are
obtained by making use of a fundamental solution procedure,
ammnely the Biot-Savart law. This has largely been developed
by Wu and co-workers [2], although the first application of this
method to the two-dimensional flow past a circular cylinder
was given by Payne [3]. The second method is that in which
the velocity components are determined directly {rom the defi-
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nitions (3} of the vorticity. Gatski, Grosch, and Rose [4, 5}
have described these methods in two and three dimensions and
there are numerous other papers noted by Gatski [1]. The third
method is that in which Egs. (2) and (3) are used to derive
second-order Poisson-type differential equations for each of
the separate velocity components, These may then be solved
by boundary-value techniques, since boundary conditions are
given for all the velocity components. The first work on this
type of method was performed by Fasel [6] and by Cook [7].

1.3. Present Work

In the present paper we propose a method which is somewhat
similar in principle to that of Refs. [4, 5} but which involves
solution principles which are basically new. In the two-dimen-
sional case which we consider there is only one equation for the
scalar vorticity which, together with the equation of continuity,
serves to define the velocity components once an approximation
to the vorticity is obtained. These two eguations are combined
to obtain one second-order equation for one of the velocity
components by differentiation, following the methods of Refs.
[6. 7], but the other component is determined from the equation
. of continuity itself by solving it as a first-order equation, but
wsing boundary-value technigues. It s, in fact, this solution
procedure which provides the new features of our method.
Moreover, by ensuring that the equation of continuity is solved
in an undifferentiated form we clearly ensure that it is satisfied,
at least to the order of the difference approximations involved.
We shall first illustrate the method by a very simple one-
dimensional example and then apply it to a trial two-dimen-
sional problem involving the linear biharmonic equation. Fi-
nally, the problem of heat convection in a square cavity in
which one side is kept at a constant temperature is considered.

2. BASIC METHOD IN TWO DIMENSIONS

In the case of two-dimensional flow Eq. (4) simplifies to a
stngle scalar equation for the component £ of vorticity, where
w = (0,0, {). We shall suppose that w has been made dimen-
sionless with respect to a representative length o and a represen.-
tative velocity U. The coefficient » can be removed from (4)
and the Reynolds number R = Ud/v introduced into the equa-
tions, The velocity vector is made dimensionless by dividing
by U and thus we define »/UJ = (u, 1), where (i, ¥ are the
dimensionless velocity components.

2.1. Two-Dimensional Equations

In two dimensions the dimensionless analogues of Eqgs. (2)
and (4} are, in the case of steady flow,

s ()

and
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V2§=R(u%€+vég), (6)

ay

where V2 = 3¥ax® + 9%/9y% Eq. (3) reduces to the single
scalar equation

P14
dy  ox

7
Qur restriction of the work to steady-state flow is of no special
significance since our main purpose is to deal with the solution
of (3) or (7), which hold equally for steady or unsteady flow.

Each of Egs. (3) and (7} can be considered, in effect, as a
one-dimensional first-order equation in one or the other of the
variables u and v but with the conditions that « and » are given
on all boundaries. There is thus more information available
than is normally present for first-order equations and it raises
the question as to whether such problems can be solved by
boundary-valve techniques. We have devised an appropriate
technique which will be illustrated first of all by a simple one-
dimensional example.

2.2, One-Dimensional Hlustration

Consider the one-dimensional equation

u'(x) = r(x), 8
where the prime denotes differentiation with respect to x. We
suppose that r(x) is specified and we are required to find u(x).
The new point about the Navier—Stokes type of problem is that
u(x) is known at both ends of the variable domain In x rather
than only one. If therefore we expand u(x} as a Taylor senes
about a point x = x; of a uniform grid of length /. we find that

=3u, + 4wy — oy, = ﬁ 9)

where

fi = 2hr, = 20%¢] + @] + O(hY). (L0)
This is a 3-point difference formula suitable for determining
an approximation to wu(x) by boundary-value techniques at a
set of grid points in the solution domain. The use of boundary-
value methods is feasible because of the two-point boundary
conditions and we suppose that sufficient terms on the right-
hand side of (9) can be calculated to determine an approximation
of sufficiently high order in .

2.3, Numerical Example

We need only a very simple case of (8) to show that the
method works. For a given r(x) any suitable matrix inversion
of (9) is satisfactory, since (9) defines a tridiagonal matrix which
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TABLE 1
Solutions of Eq. (8) with r(x) = sinx, #(0} = 0, u(m) = 2

Approximation x = 0257 x =057 x = 0757
A 0.3960 1.1341 17819
B 0.2943 1.0044 1.7142
C 0.2927 0.9997 1.7069
E 0.2929 1.0000 1.7071

is diagonally dominant. We have chosen the SOR ierative
procedure in the form

Wt = (1 — o) + %(31,{@‘1 + e+ f), an

assuming that the components u; (i = 1, 2, ..., n) are determined
in the order of ascending i. The parameter w is the relaxation
factor and we know that the procedure (11) will be convergent
for all e such that 0 < @ < 2. We have taken the case r(x)
= sin x with boundary conditions «(0) = u(m) = 2. Thus the
solution of (8) is

u(x}) =1 — cos x.

(12)
2.4. Calculated Results

Two sets of calculations have been carried out in the case
of (9) and (10) with r{x) = sin x over the region x = (Q to
x = 7, the first with A = 7/20 and the second with & = #/40.
In both cases three approximations were obtained, correspond-
ing to retaining one, two, and three terms respectively on the
right-hand side of (10). For the first of these cases an approxima-
tion was obtained corresponding to various values of @ in the
range 1 = w = 1.9 in (11), in each case starting the iterative
process from the initial assumption &, = 0 ¢ = 1, 2, .., n).
The number of iterations to convergence, described by the test

n

3 it — 1t < 0.0001

i=1

(13}

was recorded. For & = | this number was 41, decreasing to
13 at @ = 1.4 and then increasing, e.g., to 156 at @ = 1.9,
Some comparative results for the three solutions, denoted by
A, B, and C, are given in Table I for the grid size & = 7/20.
The exact solution (12) is denoted by E and the results indicate
the improvement of the approximations as more terms are taken
on the right-hand side of (9). The approximations using the
grid size h = #/40 are significantly better, the best of them
being correct to almost five decimals.

3. THE NAVIER-STOKES PROBLEM

We now turn our attention to the solution of Egs. (5)—(7).
The vorticity transport equation (6) is approximated in the
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present work by means of standard second-order accurate cen-
trai-difference formulae which are well known and do not need
to be described. The main purpose is to consider the determina-
tion of the velocity components from Egs. (5) and (7) and, in
particular, the solution of (3) using the method of the previ-
ous section.

3.1. Approximation to Eq. (5)

Equation (5) can be approximated simply by identifying the
term du/dx with the left-hand side of (8) and the term
—dv/dy with the right-hand side, both terms now being under-
stood to represent functions of the variables x and y. Thus Eq.
(9) must now be written in double-subscript form, namely

=3y T duyy — (14)

Uy = £ij
and f;; must likewise be defined in (10} in terms of values at
a given grid point {,j of a function r(x, y) = —du/dy and its
derivatives with respect to x. In the present work we have
retained all the stated derivatives in (10), since they can all be
expressed in terms of second-order accurate central differences

Over a nine-point compact molecule. An appropriate approxima-
tion is found to be

ﬁ,j = %—(1{+]‘j+] - vH"J”I) (15)

2
'_'E(Vi,jﬂ = Vi1 T M- + Vx‘—l,j—l)-

Because the function r(x, ¥) in this problem has been obtained
by second-order numerical differentiation, the error in (15) is
O(h). To preserve the O(h*) accuracy of (10) it is necessary
to calenlate 3/ 9y 10 at least O(h?) and this destroys the compact
nature of the molecule.

The set of Egs. (14) is solved by the SOR procedure in a
similar manner to the set (9}, proceeding along rows for i =
1, 2, ..., N. The method is therefore equivalent to the method
of lines. It is assumed during the course of these iterations
that the components of the vector f;; remain fixed at the start
of the iterations, i.e., f;, is not updated during the iterations. In
fact it was found to be efficient to carry out one complete
iteration only along each of the lines in the x direction through-
out the whole field and then to proceed to the solution for the
component 'v.

3.2. Solution Procedure for vix, y)

A similar procedure cannot be used for determining v{x, y)
directly from (7). This would involve applying the method of
lines in the x direction also to determine v and so far we
have not succeeded in finding a stable process in the iterative
determination of & and v. Thus to determine v we make use
of the second-order equation obtained by eliminating # from
Eqs. (5) and (7), namely
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v -2y (6)

This is now approximated by the customary second-order accu-
rate central-difference formulae. This completes one formula-
tion of the problem.

3.3. Alternative Method of Solution

We can clearly also solve Eq. (5} for »{x, y) by writing it

in the form dw/dy = —au/0x, which can then be approximated
in the form

"314'.',,‘4 - 41’(,,' = Vi T &g (17
where

Bi; = %(uiﬂ(;”r] = M-y 1) (18)

2 .
+ 3(”1‘*1,} = bipry ™ Uy b u;~1,,:—1)-

The set of Eqs. (17) are then solved successively by iterative
methods along lines of constant i, each solution covering the
values j = 1, 2, ..., N. Since two-point boundary values of
v(x, ¥) are given in the direction of y for each value of x, the
solution of (17) can be carried out by any method of matrix
inversion. In the present work, as mentioned, an iterative
procedure was used.

Along with the solution procedure of determining a solution
of (17) for v; we use a second-order equation {or determining
an approximation to u(x, y). This is easily found from (5) and
(7) to be

Vzu—}-i?—g:o
day

(19)
and this is solved by approximating all derivatives using central
differences. The finite-difference equations obtained in this
way are solved subject to Dirichlet conditions, since boundary
values for u(x, y) are known,

4. NUMERICAL EXAMPLES

The numerical examples used to illustrate these methods in
the two-dimensional case have both been soived over the do-
main of a unit square using a grid of size h. In general the
solution procedure adopted was to perform one iteration of the
vorticity equation for i, j = 1, 2, ..., N, one iteration of the
second order equation for Mx, y) again for i, j, = 1,2, .., N
and then one iteration of Eq. (14) for w(x, y) withi = 1, 2, ...,
N aleng each line of constant j. This procedure was repeated
unti} overall convergence, defined by tests similar to (13), was
obtained. The alternative formulation described in Section 3.3
was implemented in a similar manner.
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TABLE I

Computed Values of {(0.5, 0.5) for Four Model
Sohutions of Eq. (20)

h A B C D
1720 3.626 3.626 3.632 3492
1740 3,549 3.549 3.554 3515
160 3.535 3.535 3.539 3.520

4.1. Solution of the Biharmonic Equation

As a simple illustration of the two-dimensional method we
consider the solution inside the unit square, 0 = x =}, 0 =
y = 1, of the equations

VE+100=0, Vi+ (=0 (20)
with
l}f=§£}:0 whenx = 0,1,
ox @
= a—"bz =
= By 0 wheny=10,1,

In this problem the forcing term in the vorticity equation de-
pends neither on the stream function nor the Reynolds number,
but the function {'is dependent on f by means of the calculation
of its boundary values on the unit square in terms of values of
i within the square. We have considered four madel processes,
denoted by A, B, C, and D, ali of which use the first of (20)
in finite-difference form to determine the vorticity.

In model A we have used the formulation of Sections 3.1
and 3.2 and in model B the alternative formulation of Section
3.3 to compute u(x, y) and vix, ¥). In model C the function
u(x, ¥} is determined from (19} while »(x, y) is determined
from (16), using two-dimensional boundary-value methods for
both, In all of the medels A, B, and C the boundary vorticity
is calculated from (7} using three-point forward or backward
difference formulae to approximate the appropriate derivative
normal to the boundary. Finally, in mode! D we utilize the
usual vorticity—stream function formulation of (20}, using the
standard central finite-difference approximation to determine
values of ¢ within the square and with boundary values of £
calculated from the formula of Woods [8], namely

{ = “3%”12 - %fh

where the subscript I denotes the first internal grid point along
the inward normal to the boundary point B. This formula is
second-order accurate.

(22)

4.2. Computational Results

We have computed results using the three grid sizes h =
1/20, 1/40, and 1/60. As may be expected, all methods give
comparable results in accuracy. In Table 11 we have given
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computed values of 0.5, 0.5) obtained from all four models.
The #*-extrapolated values from the £ = 1/40 and & = 1/60
solutions are 3.521 from models A and B, 3.527 from the model
C, and 3.524 from model D. These estimates would seem to
be accurate within a decimal or two in the third place.

4.3. Free Convection in a Square Cavity

As a problem involving the full Navier—Stokes equations we
consider the problem of free convection in a square cavity
which has been used previously by many authors as a test of
numerical methods. In terms of the stream function (x, ¥),
vorticity {(x, ¥), and the temperatwre T(x, y) within the region,
0=x=10=y =1, the governing equations can be ex-
pressed as

Vi + =0 (23)
920 = pr-! (uﬂ+ vi"—{) ~rad Q4
dx dy dx
o=, 4 8T
\&A u8x+ vay. (25)

Here, Pr is the Prandtl number, Ra is the Rayleigh number,
and all variables are assumed to be dimensionless. If C denotes
the unit square and n is the ontward normal fo it at any point,
the boundary couditions are

= ddfon =0 onC; {26a)
(26h)

(26¢)

T=1 whenx=0, T=0 whenx=1;

dTiay =0 wheny =10, 1.

Bench-mark solutions for this problem have been given by
de Vahl Davis [9] and varions comparison solutions have been
described and discussed by de Vahl Davis and Jones [10]. Thus
we have the opportunity of making quite detailed comparisons
with these resuits. Equations {23) and (24) may easily be com-
pared with Eqs. (5)—(7). Thus, with the customary definitions
u = Yl dy, v = —d/dx, Egs. (5) and (7) represent (23). Also,
(24) may be identified with (6} if we add the term —Ra 077/dx
to the right-hand side and put R = Pr™'. This may then be
expressed in central differences in the form

1 1 1
(1 - ’z'hui*.j) Loy T (1 - ‘,Z‘h Vu’) Ly T (1 T ’jh”?ﬁ') Ly
1 1
+ (1 + 3 h Vf'j) Gija = A+ 7 Ra(Tis,; — Tip) = 0,
(27)

where u* = Prly, v* = Pr™'y, The central-difference approxi-
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TABLE III

Values of ly and £ at the Mid-point of the Cavity for Heat
Convection Problems for Pr = 0.71 Using Model A

Ra = 1(® Ra = 10
h Ly, B &b (d, 3| &b
% 1.260 33.07 6.595 121.23
5 1.196 32728 5461 103.32
& 1.184 32.13 5245 99,85

mation to (25) may be obtained from (27) by writing { = T
and poiting Pr = 1, Ra = 0.

With the changes noted in solving (24) rather than () and
with the additional selution required for (25), we have obtained
approximate solutions using the models A and B described in
Section 4.1. The difference equations (27) have been used in
all cases inside the unit square. The boundary condiiions for {
have been calculated as in Section 4.1. The boundary conditions
for T{x,¥) ony = 0, 1 are obtained by approximating (26¢) using
central-difference formulae and using the equation obtained to
eliminate the external value which is introduced when (27),
with { = 7, Pr = 1, Ra = 0, is applied on either y = 0, 1.

4.4. Computational Results

The two models A and B have been solved for the case
Pr = {).71 considered by de Vahl Davis {9] and for the Rayleigh
numbers Ra = 10° and 10* using the O(k*) form of (15). Three
grid sizes k = 1/20, 1/40, and 1760 were used to obtain solutions.
Results for the mid-point values |42, 3)| and &3, 3) from these
solutions are shown for model A in Table III and for model B
in Table V. The bench-mark value given by de Vahl Davis
for [¢n3, )| is 1.174 at Ra = 10 and 5.071 at Ra = 10%. The
values corresponding to these, obtained by A* extrapolation
from the i = 1/40 and A = 1/60 solutions of Table [, are
1.174 and 5.072, respectively; the similar #*-extrapolated values
from Table IV are respectively 1.174 and 5.076. Thus, bearing
in mind the high level of accuracy claimed for the bench-
mark solutions, the present solution procedures seemn capable

TABLE IV

Values of |44 and ¢ at the Mid-point of the Cavity for Heat
Convection Problems for Pr = 0.71 Using Model B

Ru = 1¢¢ Ra = 104
h Lz, )| (MY |3, 3] &4
b 1252 32.56 5.641 103.57
z‘a 1.194 32.25 5225 98.73
& 1.183 12.12 5.142 9782




VELOCITY-VORTICITY SCLUTION

TABLE V

Properties of the Solution of the Heat Convection Problem
for Pr = (.71, Ra = 10% for Model A
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TABLE VH

Properties of the Solution of the Heat Convection Problem
for Pr = .71, Ra = 10’ for Model B

[T Vinax Nt Ntgin
h yix =05 x(y=05) Ny  ylx=0) yx=0

2 3566 3.654 1114 1,488 0.700
0816 0.178 0.090 1

5 3.631 3.679 1.i16 1.500 0.694
0.813 0.178 0.088 |

& 3,640 3.688 1.117 1.503 0.692
0.813 0.178 0.088 1

Bench-mark 3.649 3.697 1.147 1.505 0.692
Solution 0.813 0.178 0.092 1

Hypax Praax Numnx Numm
h yix =05 x(y=05) Nug yx=0 yx=0

& 3610 3614 1.116 1.500 0.696
0.813 0.17% 0.095 1

) 3.633 3.670 1.116 1.502 0.693
(Q.313 0.179 (.089 1

& 3.641 3.683 1.117 1.504 0.692
0.813 0.179 0.083 1

Bench-mark 3.649 3.697 1117 1.505 0.692
Solution 0.813 0.178 0.092 1

of giving good accuracy. We may note that the deterimination
of the stream function is not an integral part of either of the
mode]l A or B procedures. The values given in Tables Il and
IV were obtained afterwards from each of the corresponding
solutions for £ by solving (23) subject to the conditions of (26a).
Some further representative properties of the model A solu-
tions are given in Tables V and VI and the corresponding
properties of the model B solutions are presented in Tables VII
and VL The values of the Nusselt number Nu are all appro-
priate to the end x = 0 of the cavity and are calculated from
the formula
Nu(y) = —{(8T/9x),=. (28)
The value Ny, is the integrated mean value of Nu( y) over the
range y = (0 to y = 1. The tendencies of all the properties in
these tables as the grid size is reduced are generally consistent
with the bench-mark values of de Vahl Davis, which are also
given. The results also are in reasonable agreement with results
for the solution of the same prablem given by Dennis and
Hudson [11], bearing in mind the completely different solution
procedures adopted in the two investigations. In assessing the

TABLE VI

Properties of the Sclution of the Heat Convection Problem
for Pr = 0.71, Ra = N for Model A

comparisons it should, however, be borne in mind that a number
of the properties given in these tables have been cobtained by
interpolation of the corresponding solutions.

5. SUMMARY AND CONCLUSIONS

We have presented two methiods, methods A and B, in which
the equation of continuity for the two-dimensional motion of
incompressible flnids is solved by iterative techniques based
on boundary-value methods. This is possible because conditions
are given for the velocity components at all points on the
boundary of a closed domain. Note that the two methods do
not always give identical results. This is because of the trunca-
tion errors inherent in the finite-difference approximations.
However, one would expect that the difference between the
results should decrease as k is reduced. Examination of Tables
BI-VIindicates that this is indeed the case. It may be concluded
by comparison of the results obtained with other available
solutions that the methods give satisfactory results.

In the two models considered, one velocity compoenent is
obtained by solving the first-order equation of continuity and
the other is obtained from a second-order equation. This is

TABLE VHI

Properties of the Solution of the Heat Convection Problem
for Pr = .71, Ra = 16" for Model B

Ui, Vinax Numax N“min Umax Visan Numax Nurmn
h yix = 05) x(y=05) Ny ¥x=0 yx=0 h vix =05 x(y =105 Nug yx=H yx=0)
& 16.59 20.07 2.206 3.567 0.599 & 16.41 19.67 2329 3.746 0.589
0.827 0.117 0.165 1 0.825 0.119 0.141 1
& 16.34 19.80 2.239 3.488 0.590 ol 16.28 19.59 2.253 3.547 0.583
0,824 0.118 {151 i 0.824 0.122 (.144 1
& 16.25 19.70 2.242 1511 0.587 & 16.23 (9.60 2.246 3.531 0.584
0.823 0.119 0.148 1 0.824 0.120 0.145 1
Bench-mark 16.18 19.62 2238 3528 0.586 Bench-mark 16.18 19.62 2.238 3.528 0.586
Solution 0.823 0.119 0,143 1 Solution 0.823 0.119 0.143 1
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TABLE IX

Average Errors per Solution Point in the Equation of Continuity
and the Definition of Vorticity for the Heat Convection Problem for
Pr = 0.71 Using Model B

Average absolute

error Average scaled eror

Ra h 5 hiy 5 sf
(o * 0.104 1,258 0.016 0.068
o 0.032 0.344 0.009 0.019
& 0.015 0.163 0.006 0.009
104 % 1.011 10.88 0.044 ¢.112
% 0.347 2.859 0.023 0.034
% 0.175 1302 0.013 0,016

derived by using the equation of continuity to eliminate one
velocity component from a differentiated form of the first-order
equation defining the scalar vorticity . It would presumably
be possible to employ the methods of the present paper to
obtain one velocity component directly from the first-order
equation which defines ¢ and the other component from one
or other of Egs. (16) or (19) as appropriaie. We have not
investigated this question here.

It does, however, seem worthwhile to give some verification,
in one of the examples considered in the present paper, that
the computed velocity components and vorticity do actually
satisfy Egs. (5) and (7) to an acceptable level of accuracy.
Some tests have therefore been carried out on the numerical
solutions obtained in the case of the heat convection probiem
by calculating the quantities

E = |aulax + aviayl, E* = |¢ — ov/dx + dufdy|, (29)

at each point of the solution domain. In order to test the whole
domain, the quantities in (29) are summed over all grid points
and the sums are then divided by the total nomber of internal
grid points, thus giving an average error per point for each
quantity.

Some typical results are given in Table IX for model 5. Here
the quantities Sy and S¥ are defined by

1 i
&=E§a ﬁ=ﬁ2Ei (30)

where E and E* are defined in (29) and the summations extend
over all internal grid points N. These sums give the average
absolute error per grid point, but it is perhaps more realistic to
relate this error in some way to the absolute values of the
quantities involved in defining it. Thus, we have also recorded
scaled estimates of the average error, defined by
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Bu
dy

ou

ax

s-y3ls/(
S§=§§{Eﬂ/0ﬂ+ %)}

These are, of course, considerably smaller than the average
absolute error per point. However, the main point is that, how-
ever the error is estimated, it decreases with grid size. This is
entirely consistent with the results displayed in Tables VII-
VIH. The corresponding results for model A are simiiar and
consistent with the results of Tables V-VI.

We have also compuied values of §;, ¥, 52, and §# from
solutions obtained by model C (solving the two second-order
equations (16) and (19) for 1 and »} and by model D (stream
function-vorticity). As one would expect, those for model D
were virtually zero, More interesting, however, is that those
for model C were significantly higher than those given in Table
IX, especially at the highest Rayleigh number. For example
with £ = 1/20 model C gives 8 = 3,73, §§¥ = 1644, §, =
0.17, and 5§ = 0.15. With 2 = 1/40 the corresponding values
are 1.02, 4,38, 0.059, and 0.046, respectively. These figures
suggest that the equation of continuity is better satisfied by
models A and B than by model C.

Tt is difficult to generalise on the question of efficiency. Cpu
times were recorded for each model. Computing times were
generally of the same order for any particular case and no
particular model proved to be the most efficient overall.

We have presented an alternative approach to solving the
equation of continuity which appears to give satisfactory results
for the problems considered. One advantage of the method
over the usual stream function formulation is that it should be
possible to apply it to problems in three dimensions. This will
be investigated in due course.

This research was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada.
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